Local Contrast Learning

نویسندگان

  • Chuanyun Xu
  • Yang Zhang
  • Xin Feng
  • Yongxing Ge
  • Yihao Zhang
  • Jianwu Long
چکیده

Learning a deep model from small data is yet an opening and challenging problem. We focus on one-shot classification by deep learning approach based on a small quantity of training samples. We proposed a novel deep learning approach named Local Contrast Learning (LCL) based on the key insight about a human cognitive behavior that human recognizes the objects in a specific context by contrasting the objects in the context or in her/his memory. LCL is used to train a deep model that can contrast the recognizing sample with a couple of contrastive samples randomly drawn and shuffled. On one-shot classification task on Omniglot, the deep model based LCL with 122 layers and 1.94 millions of parameters, which was trained on a tiny dataset with only 60 classes and 20 samples per class, achieved the accuracy 97.99% that outperforms human and state-of-the-art established by Bayesian Program Learning (BPL) trained on 964 classes. LCL is a fundamental idea which can be applied to alleviate parametric model’s overfitting resulted by lack of training samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density-Based Histogram Partitioning and Local Equalization for Contrast Enhancement of Images

Histogram Equalization technique is one of the basic methods in image contrast enhancement. Using this method, in the case of images with uniform gray levels (with narrow histogram), causes loss of image detail and the natural look of the image. To overcome this problem and to have a better image contrast enhancement, a new two-step method was proposed. In the first step, the image histogram is...

متن کامل

A New Method for Detecting Ships in Low Size and Low Contrast Marine Images: Using Deep Stacked Extreme Learning Machines

Detecting ships in marine images is an essential problem in maritime surveillance systems. Although several types of deep neural networks have almost ubiquitously used for this purpose, but the performance of such networks greatly drops when they are exposed to low size and low contrast images which have been captured by passive monitoring systems. On the other hand factors such as sea waves, c...

متن کامل

Perceptual Learning of Liquids

Previous research on lexically-guided perceptual learning has focussed on contrasts that differ primarily in local cues, such as plosive and fricative contrasts. The present research had two aims: to investigate whether perceptual learning occurs for a contrast with non-local cues, the /l/-/r/ contrast, and to establish whether STRAIGHT can be used to create ambiguous sounds on an /l/-/r/ conti...

متن کامل

Assessment for/as Learning in Hong Kong English Language Classrooms: A Review

Multiple conceptualizations of the interrelation between assessment and learning yield three notions of assessment: assessment of learning, assessment for learning, and assessment as learning. This paper aims at uncovering roles and obstacles of assessment for learning and assessment as learning in English language classrooms in Hong Kong. Grounded upon the theory of constructivism and the noti...

متن کامل

Adaptive Neighborhood Graph for LTSA Learning Algorithm without Free-Parameter

Local Tangent Space Alignment (LTSA) algorithm is a classic local nonlinear manifold learning algorithm based on the information about local neighborhood space, i.e., local tangent space with respect to each point in dataset, which aims at finding the low-dimension intrinsic structure lie in high dimensional data space for the purpose of dimensionality reduction. In this paper, we present a nov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03499  شماره 

صفحات  -

تاریخ انتشار 2018